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Abstract The variational u+ v model for image decomposition aims at sep-
arating the image into a `cartoon component' u, which consists of
relatively �at plateaus for the object regions surrounded by abrupt
edges, and a `texture component' v, which contains smaller-scale
oscillations plus possibly noise. Exploiting this model leads to im-
proved performance in several image analysis and computer vision
problems. In this paper we propose alternative approaches for u+v
decomposition based on levelings and texture energy. First, we pro-
pose an e�cient method for obtaining a multiscale cartoon compo-
nent using hierarchies of levelings based on Gaussian scale-space
markers. We show that this corresponds to a constrained mini-
mization driven by PDEs and link the leveling cartoons with total
variation minimization. Second, we extract the texture component
from levelings of the residuals between the image and its multiscale
levelings. Further, we employ instantaneous nonlinear operators
to estimate the spatial modulation energy in the most active tex-
ture frequency bands and use this as a new type of texture markers
that yield an improved texture component from the leveling residu-
als. Finally, we provide experimental results that demonstrate the
e�cacy of the proposed image decomposition methods.

Keywords: leveling, texture, energy, image decomposition.

1. Introduction

Decomposing an image f into its structural part (objects or geometric fea-
tures at various scales represented by their regions, boundaries, and mean
intensities) and its texture part is both an interesting problem as well as an
approach useful for many image analysis and vision applications, such as
enhancement, inpainting, segmentation, texture and shape analysis, object
description.

A recently proposed method for image decomposition is the f = u + v
model, where the u part is called the �cartoon component� and consists
of relatively smooth or �at plateaus for the object regions surrounded by
abrupt intensity walls, whereas the small-amplitude oscillatory v part is
called the �texture�. If there is also noise or some other type of insigni�cant
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residual w, then a re�ned model f = u+ v+w may be used. Next we sum-
marize some previous works in this area and outline our new contributions.

Background on image decomposition: Many of the nonlinear edge-
preserving image smoothing schemes can create cartoon approximations of
an image. Examples include the anisotropic di�usion and image selective
smoothing. Several of these schemes have been shown in [11] to be special
cases or closely related to the Mumford-Shah energy functional [12]

EMS(u,C) =
∫∫
R\C

(||∇u||2 + λ(u− u0)2)dxdy + µLen(C). (1)

Actually, one way of obtaining a piecewise-smooth cartoon u from an
initial image u0 is via minimization of the above functional by searching
for those u that are piecewise-constant on the regions R. This has been
used both for denoising and boundary detection. Another approach is via
the total variation (TV) image denoising method [14] which �nds a cartoon
u by minimizing the TV norm

∫∫
R
||∇u|| subject to

∫∫
R

(u − u0) = 0 and∫∫
R

(u− u0)2 = σ2, or equivalently by minimizing the functional

EROF (u) =
∫∫

R

||∇u||dxdy + λ

∫∫
R

(u− u0)2dxdy, (2)

on some image domain R. This minimization is done via a PDE (gradient-
descent) solver that �nds a local minimum of the TV functional. While the
TV approach performs well for edge-preserving image denoising, it may not
preserve texture for small λ. Y. Meyer [10] changed the TV optimization
problem (2) by using instead of the L2 norm other norms that are more
appropriate to preserve texture. Thus, Meyer introduced the decomposition
of an image f into a model u+v = f where u and v result from the modi�ed
optimization problem, u is some type of cartoon while v contains the texture
(plus possibly noise).

Vese & Osher [16, 17] developed a PDE-based iterative numerical algo-
rithm to estimate the u and v components by approximating Meyer's weaker
norms. Texture is assumed to be an oscillating function

v = div(~g) = ∂xg1 + ∂yg2, (3)

where the vector ~g captures variation in the vertical and horizontal image
directions. The component v may exhibit large oscillations, but yields a
small metric as measured by the norms ||~g||Lp = (

∫∫
|~g|p)1/p For p → ∞,

norm Lp approximates L∞ and thus the norm of Meyer's space of oscillating
functions [10]. A three-component f = u+ v+w decomposition model was
formulated with the (u, v) components derived by minimizing

EV O(u,~g) =
∫∫
R

|∇u|dxdy + λ

∫∫
R

|f − (u+ div(~g))|2dxdy + µ||~g||Lp
, (4)
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and the residual f − u− v giving image noise w. By letting λ, p→∞, this
scheme approximates the initial decomposition proposed by Meyer.

The above ideas and algorithms for u + v image decomposition have
been used for improving image restoration [16] and image inpainting by
simultaneous �lling-in texture and structure in missing image parts [1].

New contributions: Some open research areas in this interesting u + v
decomposition space are: (i) Alternative schemes for estimation of a car-
toon u and/or texture v component. (ii) Analysis of the information in the
u and/or v components. (iii) Exploitation of this decomposition for improv-
ing performance in several image analysis and computer vision problems. In
this paper we contribute advances in the �rst two directions inspired by and
further utilizing the u + v idea. First, we propose an e�cient method for
obtaining a cartoon component, possibly at multiple scales, using nonlinear
object-oriented smoothing of the leveling type that is driven by PDEs with
global scale-space markers obtained from Gaussian di�usion of the image.
We also show optimality of this method via a nonlinear constrained mini-
mization. The residuals among consecutive scales of this leveling pyramid
provide us with the texture component. Second, we analyze textural in-
formation by using instantaneous nonlinear energy-tracking operators that
estimate the spatial modulation energy. This energy tracking focuses on the
most active texture frequency bands. Third, we propose an alternative new
type of markers for the levelings extracting the texture part which are based
on texture modulation energy. Finally, we provide experimental results that
demonstrate the e�cacy of the proposed methods for u+ v decomposition.

2. Levelings: Variational problems

Proofs of the following variational formulations can be found in Maragos
[7].

Let u0(x, y) some smooth initial image and u(x, y, t) some scale-space
analysis over some compact image domain R with u(x, y, 0) = u0(x, y).
Maximizing the volume functional by keeping invariant the global supremum

max
∫ ∫

R

u dxdy s.t.
∨
u =

∨
u0, (5)

has a gradient �ow governed by the PDE generating �at dilation by disks:

ut = ||∇u||, u(x, y, 0) = u0(x, y). (6)

Similarly, minimizing the volume functional by �xing the global in�mum

min
∫ ∫

R

u dxdy s.t.
∧
u =

∧
u0, (7)
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has a gradient �ow governed by the isotropic �at erosion PDE:

ut = −||∇u||, u(x, y, 0) = u0(x, y). (8)

Imagine now creating a new type of cartoon by starting from a reference
image f(x, y) consisting of several parts and a marker image M = u0(x, y)
(initial seed) intersecting some of these parts and by evolving M toward
f in a monotone way such that all evolutions u(x, y, t), t ≥ 0, satisfy the
following partial ordering, ∀x, y ∈ R

t1 < t2 =⇒ f(x, y) �f u(x, y, t2) �f u(x, y, t1) �f u0(x, y). (9)

The partial order u �f g means that f ∧ g ≤ f ∧ u and f ∨ g ≥ f ∨ u.
Further, if we partition the following regions R− and R+ formed by the
zero-crossings of f − u0

R− = {(x, y) : f(x, y) ≥ u0(x, y)} =
⊔
iR
−
i ,

R+ = {(x, y) : f(x, y) < u0(x, y)} =
⊔
iR

+
i ,

(10)

into connected subregions, then the evolution of u is done by maintaining
all local maxima and local minima of u0 inside these subregions R−i and
R+
i , respectively:∨

R−i

u =
∨
R−i

u0 and
∧
R+

i

u =
∧
R+

i

u0, R = (
⊔
i

R−i ) t (
⊔
i

R+
i ), (11)

where
⊔

denotes disjoint union. Since the order constraint f �f u �f u0

implies that |f − u| ≤ |f − u0|, the above problem is equivalent to the
following constrained minimization

min
∫ ∫

R

|u− f |dxdy s.t.
∨
R−i

u =
∨
R−i

u0,
∧
R+

i

u =
∧
R+

i

u0. (12)

Theorem 1. A gradient �ow for the problem (12) is given by the PDE

∂u(x, y, t)/∂t = −sign(u− f)||∇u||,
u(x, y, 0) = u0(x, y). (13)

The PDE (13) was introduced in [9]. It was studied systematically in
[6] where it was proved that it has a steady-state u∞(x) = limt→∞ u(x, t)
which is a leveling of f with respect to u0, denoted by u∞ = Λ(u0|f).

A leveling g of some image f was de�ned geometrically in [9] via the
property that, the variation of g between any two close neighbor pixels p, q
is bracketed by a larger same-sign variation in the reference image f :

g(p) > g(q) =⇒ f(p) ≥ g(p) > g(q) ≥ f(q). (14)
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In [6] levelings were de�ned algebraically as �xed points of triphase operators
λ(M |f) that switch among three phases, an expansion, a contraction, and
the reference f . Further, the leveling of f w.r.t. M = u0 can be obtained
as the limit of iterations of λ:

u∞ = Λ(M |f) , lim
n→∞

λn(M |f) �f · · ·λ(M |f) �f M = u0. (15)

The simplest choise for λ is λ(M |f) = [f ∧ δ(M)] ∨ ε(M), where δ and
ε are disk dilations and erosions.

3. Leveling-based multiscale cartoons

Levelings have many interesting scale-space properties [9]. Due to (9) and
(14), they preserve the coupling and sense of variation in neighbor image
values, which is good for edge preservation. Further, due to (11) the lev-
elings do not create any new regional maxima or minima. Also, they are
increasing and idempotent �lters. In practice, they can reconstruct whole
image objects with exact preservation of their boundaries and edges. In this
reconstruction process they simplify the original image by completely elim-
inating smaller objects inside which the marker cannot �t. The reference
image plays the role of a global constraint.

Motivated by all their above attractive properties, we propose an alter-
native method for u, v decomposition of an original image where we use the
leveling as the cartoon approximation

u = Λ(M |f), (16)

and its residual r = f − u as containing the texture component v. For u,
the marker M plays an important role. Its choice gives us a great �exibility
for the �nal leveling and we could de�ne it based on a multiscale analy-
sis. Speci�cally, given a reference image f , suppose we can produce various
markers Mi, i = 1, 2, 3, ... that are related to some increasing scale param-
eter i. Then, if we construct the levelings ui = Λ(Mi|ui−1), i = 1, 2, 3, ...,
with u0 = f the cartoon images ui constitute a hierarchy of multiscale lev-
elings possessing the causality property that uj is a leveling of ui for j > i.
One way to construct such multiscale leveling cartoons is to use a sequence
Mi = f ∗ Gσi of multiscale markers obtained from sampling a Gaussian
scale-space, where Gσ denotes an isotropic 2D Gaussian function of stan-
dard deviation σ. As shown in Figure 1, the image edges and boundaries
which have been blurred and shifted by the Gaussian scale-space are better
preserved across scales by the multiscale levelings. The corresponding resid-
uals texture components ri = f−ui contain a hierarchy of multiscale texture
components, whose extraction will be detailed in the following sections.

As an alternative to the linear scale-space marker selection, one can
consider the use of anisotropic di�usion [13]. At each sequence step the
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(a) f (b) M1 = Gσ1 ∗ f (c) u1 = Λ(M1|f) (d) r1 = f − u1

(e) u1 − u2 (f) M2 = Gσ2 ∗ f (g) u2 = Λ(M2|u1) (h) r2 = f − u2

Figure 1. Multiscale leveling cartoons and u+ v decomposition. (a) Reference
f . (b) Gaus. Marker 1 (σ1 = 4). (c) Leveling 1 (u1). (d) Residual 1
(r1 + 100). (e) Levelings di�erence u1−u2. (f) Gaus. Marker 2 (σ2 = 8). (g)
Leveling 2 (u2). (h) Residual 2 (r2 + 100).

leveling marker is obtained by a version of the image with blurred regions
but adequately preserved boundaries, caused by the constrained di�usion
process. Levelings obtained using anisotropic di�usion markers tend to
retain information about edges in smaller scales on the cartoon component.

Proposition 1. Levelings decrease the TV norm:
(a) If u = Λ(M |f), then

∫∫
||∇u|| ≤

∫∫
||∇f ||.

(b) If ui = Λ(Mi|ui−1) with u0 = f , then for all i∫ ∫
||∇ui+1|| ≤

∫ ∫
||∇ui|| ≤

∫ ∫
||∇f ||. (17)

Proof. (a) The levelings create �at plateaus on which the gradient becomes
zero. The remaining slopes are the same as for the function. (b) results
from (a).

We can compare our proposed leveling cartoons with the ones derived as
the solutions of the TV minimization problem (2) along several directions:
(i) The levelings preserve the regional maxima and minima and do not
create new ones, while the TV cartoons preserve the global mean value.
(ii) The levelings couple and preserve the sense of variation between neighbor
pixels (14) whereas the TV cartoons preserve the global variance. (iii) By
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Proposition 1, the levelings are related to a TV minimization. Further,
the TV norm of the leveling cartoon decreases monotonically if we use a
hierarchy of multiscale levelings. (iv) The presence of the marker image
M gives a leveling cartoon far greater �exibility and multiscale capabilities
than the simple regularization constants which control the scale of the TV
cartoon.

4. Texture modulation energy

4.1 AM-FM Texture model and energy

Locally narrowband image textures can be modeled as 2D spatial AM-FM
signals

f(x, y) = a(x, y) cos[φ(x, y)], ~ω(x, y) = ∇φ(x, y), (18)

that are 2D nonstationary sines with a spatially varying amplitude a(x, y)
and a spatially-varying instantaneous frequency vector ~ω(x, y). In par-
ticular, the amplitude is used to model local image contrast and the fre-
quency vector contains rich information about the locally emergent spatial
frequencies. Thus, it is reasonable to assume that the amplitude a(x, y)
and frequency vector ~ω(x, y) are locally narrowband signals and hence lo-
cally smooth. Such modulation models have been proposed by Bovik et
al. [2] and Havlicek et al. [4] and have been applied to a variety of image
processing and vision problems.

An important problem in modeling image textures with spatial AM-FM
signals is to estimate the 2D amplitude and frequency signals using compu-
tational vision algorithms that have low complexity and small estimation
error. Such an e�cient approach was developed in [5] based on an energy
operator Ψ(f) , ||∇f ||2 − f∇2f , which is a multidimensional exten-
sion of the 1D Teager energy operator. Applying Ψ to a 2D AM-FM signal
f(x, y) = a(x, y) cos[φ(x, y)] modeling a texture component yields

Ψ[a cos(φ)] ≈ a2||~ω||2, (19)

which equals the product of the instantaneous amplitude and frequency
magnitude squared and may be called the texture modulation energy. The
above approximation error is negligible assuming that the instantaneous
amplitude and frequency do not vary too fast in space or too greatly in
value compared with the carriers. Further, if we also apply the energy
operator on the image derivatives ∂f/∂x and ∂f/∂y, then it is possible
to separate the energy into its amplitude and frequency components via a
nonlinear algorithm called Energy Separation Algorithm (ESA) [5].

4.2 Multiband texture energy tracking

In Bovik et al. [2] the AM-FM models are not applied directly to the whole
(possibly wideband) image. Instead they are used on its bandpass �ltered
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versions that are outputs from a �lterbank consisting of 2D Gabor �lters.
Bandpass �ltering isolates highly active texture modulations and has some
useful consequences like an increased noise tolerance and the enforcement of
some smoothness on the amplitude and frequency signals. The motivation
in using Gabor �lters is their inherent property to be smooth, compact and
attain the lower limit of joint space-frequency resolution uncertainty and
model early �ltering stages of human vision. The concept of using multiple
frequency bands from a bank of bandpass �lters for purposes of texture
analysis or segmentation has been used with success in previous works, e.g.
[2, 4, 5].

The oscillating functions, indicated by Meyer [10] to model and extract
the v component, can be sought via AM-FM image modeling that reveals
modulations and the existence of contrast and spatial frequency oscillations.
Motivated by the analogies between the modulation models and Meyer's
indications we aim to capture oscillatory textural energy by a modi�ed
energy operator, through a multiband �ltering-modulation based process.

In our work the extracted textured part is �ltered through a bank of
2D Gabor �lters , which are characterized by impulse response of the form
hk (x, y) = e−α

2x2−β2y2
cos (Ωk1x+ Ωk2y), where α/2π, β/2π are the rms

bandwidths in each dimension and (Ωk1,Ωk2) is the k -th �lter's central
frequency pair. The �lters are uniformly arranged in the spatial frequency
domain, in a polar wavelet-like tessellation, with equal and directional sym-
metric bandwidths and cover densely the frequency domain.

The �ltered texture components from each �lter output are then aver-
aged by a local averaging �lter ha and the 2D Energy Operator Ψ is applied.
We keep the value of the �lter with the Maximum Average Teager (MAT)
Energy per pixel, given by

Ψmat(v(x, y)) = arg max
k

Ψ[((v ∗ hk) ∗ ha)(x, y)]

(∗ denotes convolution), as a means of tracking the most active texture
component. The derived Ψmat is a slowly-varying indication of texture mod-
ulation energy, which can classify among di�erent energy levels. It provides
both local and global texture information and applied to the level-free v
component, Ψmat(v) is tracking the most active texture components along
multiple modulation bands. E�cient discrete schemes exist for the numer-
ical implementation of the 2D energy operator [3, 5].

The above ideas for texture modeling have been used for geometric active
contour-based texture segmentation in Evangelopoulos et al [3]. In addition,
the u+v image decomposition using levelings for u and texture energy from
v was used in a coupled watershed plus texture PDE-based segmentation
scheme [15].

In Figure 2 we explore the e�cacy of �nding dominant components via
the MAT Energy for detecting texture areas. This procedure can provide
us with texture energy markers. We observe that the square root of MAT
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energy (or even better its higher roots) successfully mark texture areas. Fur-
ther, notice the lack of image structure and structure features (e.g. edges,
blobs) in the markers extracted from the leveling residual r1.

(a) f (b) Ψmat(f) (c)
√

Ψmat(f) (d) (Ψmat(f))1/4

(e) r1 = f − u1 (f) Ψmat(r1) (g)
√

Ψmat(r1) (h) (Ψmat(r1))1/4

Figure 2. Texture energy markers and texture detection. Application of the Ψmat

operator and its variants on initial f and the �rst leveling residual r1 = f − u1,
where u1 = Λ(f ∗ Gσ1|f) with σ1 = 2. For display, images in (b),(c) and (f),(g)
are shown by upper thresholding the energy range at its average value and then
linearly stretching onto [0,1].

5. Experiments on image decomposition

Motivated by the ability of the levelings to yield the cartoon component u,
either at the �rst or at the second marker scale, we experimentally investi-
gate in this section two possible schemes to extract the texture component
v from the residual r between the image and its leveling.

The �rst approach uses Gaussian markers both on the original image f
to yield the cartoon u (at second scale) as well as on the �rst residual to
yield the texture component according to the algorithm

u1 = Λ(M1|f), M1 = f ∗Gσ1,
u = u2 = Λ(M2|u1), M2 = f ∗Gσ2,
r1 = f − u1,
ur = Λ(M3|r1), M3 = r1 ∗Gσ3, σ3 = σ1/2,
v = r1 − ur.

(20)
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(a) Image f (b) u1 = Λ(M1|f) (c) u = Λ(M2|u1) (d) u1 − u2

(e) r1 = f − u1 (f) ur = Λ(M3|r1) (g) v = r1 − ur (h) u + v

Figure 3. Multiscale leveling cartoon and u+ v decomposition. Top row: (a) Im-
age f , (b) Leveling 1 (u1) with Gauss marker f ∗ Gσ1 (σ1 = 5), (c) Cartoon/
Leveling 2 (u2) with (σ2 = 10), (d) Leveling di�erence (u2 − u1). Bottom row:
(e) Residual r1 = f1 − u1, (f) Leveling of r1 with Gauss marker (σ3 = σ1/2),
(g) Texture / residual (v = r1 − ur), (h) Reconstruction (u+ v).

Figure 3 shows the results of the above algorithm. Figure 4 compares
them with the Vese-Osher approach. In this comparison, we note the fol-
lowing.

(i) Decompositions may not be comparable, are not optimum, only made
with same L2 norms on estimated v. (This equality of norms on the
two texture components was enforced for purposes of comparison).

(ii) Leveling uΛ is sharper, yields clearer �gure and large scale boundaries,
uVO is somehow smoother with smeared less-sharp edges.

(iii) The previous advantage of the leveling cartoon has a tradeo� with the
structure kept and evident in wΛ.

(iv) Smaller-scale structural details (e.g., facial characteristics) are pre-
served in uΛ.

(v) Texture components seem similar.

(vi) More texture remains in wVO than on wΛ, though the latter has kept
more structure.

(vii) The reconstruction uΛ + vΛ from levelings tends to `quantize' the in-
tensity values.
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(viii) What kind of residual is this `noise' wVO? Is it really modeling image
noise or something else? There is actually a mathematic formula for
it, since three levelings are required in total to produce it:

wΛ = f − u− v = Λ(M1|f)− Λ[M2|Λ(M1|f)] + Λ[M3|f − Λ(M1|f)]. (21)

(a) uVO (b) vVO (c) wVO = f−uVO−vVO (d) uVO + vVO

(e) uΛ (f) vΛ (g) wΛ = f − uΛ − vΛ (h) uΛ + vΛ

Figure 4. Comparisons with Vese-Osher u+ v, left to right cartoon u, texture v,
residual noise w = f −u− v and image reconstruction from the model u+ v. Top
row: Vese-Osher algorithm with parameters (λVO, µVO) = (5, 0.1). Bottom row:
Leveling decomposition with Gaussian markers (σ1, σ2) = (10, 16). Parameters
for both schemes were chosen so that the texture components have almost equal
L2 norms, i.e ||vVO||2 = ||vΛ||2. All image values are stretched at full grayscale for
display

Next we propose an alternative approach that uses the same algorithm
for the cartoon u but derives the texture v by applying a leveling on the
cartoon residual based on some type of texture energy markers:

v = r1 − Λ(±Ψmat(r1)|r1). (22)

Figure 5 shows several choices for such energy markers. In our experi-
ments, the best results visually were achieved by using as marker a signed
version of the MAT energy of the residual (or possibly its square root). This
can be observed both in the resulting texture image component v and its
pro�les (no slow variation is left on v and the result seems zero-mean).
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(a) f (b) r = f − Λ(M |f)

50 100 150 200 250

0.2

0.4

0.6

0.8

(c) u, row 240

(d) T1 = Ψmat(r) (e) T2 = sign(r)T1 (f) T3 =
√

T1 (g) T4 = sign(r)
√

T1

(h) v = r − Λ(T1|r) (i) v = r − Λ(T2|r) (j) v = r − Λ(T3|r) (k) v = r − Λ(T4|r)

Figure 5. Markers T based on texture energy and leveling Λ(T |r) of cartoon
residual r = f −Λ(M |f), where M = f ∗Gσ. Top row: image f , cartoon residual
r and pro�le of row 240 (black: f , red: r, blue: u, green: marker). Middle row:
Texture markers extracted from residual. Bottom row: Final texture components.

6. Conclusions

For the purpose of u+ v image decomposition, we have proposed hierarchi-
cal levelings based on Gaussian scale-space markers as a candidate model
for image cartoons u. This was theoretically and experimentally supported.
Further, we provided a viable approach to extract the texture part v based
on levelings of the cartoon residuals. An improved version of the texture
estimation resulted by performing energy-based dominant component anal-
ysis among multiple frequency bands and using this to create as texture
detection markers for the levelings of the residuals.

There are numerous applications of the above ideas and algorithms.
An ongoing research involves the restoration of ancient wallpaintings from
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cracks and missing parts by performing the previous u + v decomposition,
from which the resulting u part achieves a signi�cant degree of inpainting
of the wide cracks and holes in these images, whereas the texture part con-
tains the thin crack lines to be exploited by some further processing. An
example of this application is illustrated in Figure 6. There we see that the
leveling-based cartoon u is sharper and its corresponding texture v (based
on energy markers) contains less structure than previous approaches.

(a) Image f (b) u1 = Λ(M1|u1) (c) u = u2 (d) u2 − u1

(e) r = f − u1 (f) |T2| (g) v = r − Λ(T2|r) (h) u + v

(i) f − u− v (j) uVO (k) vVO (l) f − uVO − vVO

Figure 6. Leveling u+v decomposition for image restoration. Top row: (a) Image
f , 300×330 pixels from (6:1) subsampled �Potnia� wallpainting (prehistoric Thira

Acrotiri), (b) Leveling 1 (u1) with marker f∗Gσ, whereGσ1 Gaussian (σ1 = 4), (c)
Cartoon/ Leveling 2 (u2), with (σ2 = 8), (d) Residual of levelings (u2−u1). Middle
row: (e) Residual r=f−u1, (f) Texture energy (T = Ψmat(r)) used for marker T2 =
sign(r)

√
T , (g) Texture (v = r−Λ(T2|r)), (h) Reconstruction (v+u), (i) Modeling

error/�delity, (j),(k),(l) Vese-Osher (uVO, vVO) and �delity (f − uVO − vVO) with
(λVO, µVO) = (5, 0.1).
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